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AN ASSESSMENT OF LINEAR VERSUS NON-LINEAR MULTIGRID METHODS FOR

UNSTRUCTURED MESH SOLVERS

DIMITRI J. MAVRIPLIS�

Abstract. The relative performance of a non-linear FAS multigrid algorithm and an equivalent linear

multigrid algorithm for solving two di�erent non-linear problems is investigated. The �rst case consists of a

transient radiation-di�usion problem for which an exact linearization is available, while the second problem

involves the solution of the steady-state Navier-Stokes equations, where a �rst-order discrete Jacobian is

employed as an approximation to the Jacobian of a second-order accurate discretization. When an exact

linearization is employed, the linear and non-linear multigrid methods converge at identical rates, asymp-

totically, and the linear method is found to be more e�cient due to its lower cost per cycle. When an

approximate linearization is employed, as in the Navier-Stokes cases, the relative e�ciency of the linear ap-

proach versus the non-linear approach depends both on the degree to which the linear system approximates

the full Jacobian as well as the relative cost of linear versus non-linear multigrid cycles. For cases where

convergence is limited by a poor Jacobian approximation, substantial speedup can be obtained using either

multigrid method as a preconditioner to a Newton-Krylov method.
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1. Introduction. Multigrid methods are well known as e�cient solution techniques for both linear and

non-linear problems. As with many iterative solvers, multigrid methods can be used directly as non-linear

solvers [1, 4, 5], or as linear solvers operating on a linearization arising from a Newton solution strategy for

the non-linear problem at hand [25, 3, 18]. In addition, multigrid can also be used as a linear or non-linear

preconditioner for a Newton-Krylov method [14, 2, 15].

Newton solution strategies for non-linear problems incorporating linear multigrid solvers may fail when

the initial guess is far removed from the domain of convergence of the non-linear problem, and globalization

methods may be required to ensure a convergent method. Non-linear multigrid methods overcome this

di�culty by using a pseudo-time-stepping analogy on the non-linear problem directly [1, 5]. On the other

hand, non-linear multigrid methods may fail due to the non-existence of a solution to the physical problem

which is rediscretized on the coarse grid levels, particularly in the initial stages of convergence. However, for

various applications such as time-dependent problems, where the initial guess provided from the previous

time step is often within the non-linear convergence domain of the next time step, or steady-state problems

with mild non-linearities such as subsonic or transonic 
ows (as opposed to hypersonics), these issues are

often of minor importance.

Non-linear multigrid methods require the evaluation of the full non-linear residual at each iteration on

all grid levels, while linear multigrid methods replace these operations by matrix (Jacobian) vector products

at each iteration on all grid levels, with the evaluation of non-linear residuals only occurring on the �ne grid
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at each outer Newton iteration. One of the great advantages of non-linear multigrid methods is that they

obviate the need to form and store the Jacobian matrix associated with the Newton strategy. For many large-

scale unstructured mesh computations, where memory is the limiting factor, non-linear multigrid methods

are indeed the only viable solution strategies [13]. On the other hand, in cases where the non-linear residual

evaluation is costly, linear multigrid methods may become more attractive on a cpu-time e�ciency basis,

since for a �xed stencil, the cost of the Jacobian-vector products is �xed and independent of the cost of

non-linear residual evaluations, the latter of which are only performed a small number of times in the outer

Newton iteration. Of course this statement is only true provided the convergence of both methods is similar

on a multigrid iteration basis. In the asymptotic convergence region, where solution updates become small,

and the e�ect of non-linearities vanishes, it can be shown, and has been observed, that both methods converge

at the same rates per multigrid cycle, provided equivalent iteration strategies are used in both cases (linear

and non-linear Jacobi for example).

The above discussion is only valid in the case where an exact Newton linearization of the non-linear

problem is employed in the linear multigrid method, and an exact local linearization is used in the non-linear

method. For discretizations which are not con�ned to nearest-neighbor stencils, such as second-order accurate

convection operators which rely on distance-two neighbor stencils, the evaluation and storage costs of the

exact Jacobian become prohibitive, and simpler Jacobians based on �rst-order accurate nearest neighbor

stencils are most often employed. This practice, which can be thought of as a defect-correction scheme or a

preconditioning approach [11], ensures that quadratic convergence of the outer Newton iteration will never be

achieved, and hence that solution of the linear system to high tolerances even in the asymptotic convergence

range will be fruitless. Therefore, the overall solution e�ciency of a non-linear multigrid method versus a

linear multigrid method in such cases depends not only on the relative cost of non-linear residual evaluations

versus Jacobian-matrix vector products, but also on the degree to which a partial solution of the reduced

Jacobian system is successful in converging the full non-linear system.

In the following paper we examine two problems which are solved with a non-linear full approximation

storage (FAS) multigrid method [1], a linear multigrid method, and multigrid preconditioned Newton-Krylov

methods. The �rst problem is a transient two-equation radiation di�usion model which contains strong non-

linearities, but for which an exact Jacobian can easily be constructed. The second problem is the solution of

the steady-state Euler and Navier-Stokes equations. In this case, the non-linearities are less pronounced for

the 
ow regimes considered than in the radiation problem, but a �rst-order accurate Jacobian is used to solve

the second-order accurate discretization, for the reasons described above. While these two test problems serve

to demonstrate two di�erent situations for the comparison of linear versus non-linear multigrid methods, the

eventual solution of coupled radiation-hydrodynamic systems is also of interest.

2. Linear and Non-Linear MG Formulations. The goal of any multigrid method is to accelerate

the solution of a �ne grid problem by computing corrections on a coarser grid and then interpolating them

back to the �ne grid problem. Although this procedure is described in a two grid context, it is applied

recursively on a complete sequence of �ne and coarser grid levels. To apply a linear multigrid method to a

non-linear problem, a linearization must �rst be performed. Thus, if the equations to be solved are written

as

Rh(wexact) = 0(2.1)

with the current estimate w yielding the non-linear residual r:
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Rh(wh) = r(2.2)

the Newton linearization of this system is taken as

@Rh

@wh

�wh = �r(2.3)

This represents a linear set of equations in the solution variable �wh (the correction), to which a linear

multigrid (i.e. MG correction scheme) can be applied. In this case, the coarse grid equation reads:

@RH

@wH

�wH = �IHh rlinear(2.4)

where H and h represent coarse grid and �ne grid values, respectively, and IH
h

represents the restriction

operator which interpolates the �ne grid residuals to the coarse grid. The residual of the linear system on

the �ne grid is given by

rlinear =
@Rh

@wh

�wh + r(2.5)

and may be approximated as

rlinear � R(w +�w)(2.6)

where Rh refers to the non-linear residual, as previously. The coarse grid corrections �wH which are

obtained by solving equation (2.4) are initialized on the coarse grid as zero. After the solution of equation

(2.4), these corrections are prolongated or interpolated back to the �ne grid.

Alternatively, a non-linear FAS multigrid scheme can be used to solve equation (2.1) directly without

resorting to a linearization. In this case, the FAS coarse grid equation reads:

RH(wH ) = RH(~I
H

h wh)� IHh r(2.7)

where the term on the right-hand side is often referred to as the defect-correction [1, 11]. RH represents the

coarse grid discretization and IH
h

and ~IH
h

denote the restriction operators which are now used to interpolate

residuals as well as 
ow variables from the �ne grid to the coarse grids. In principal, di�erent restriction

operators for residuals and variables may be employed. If equation (2.7) is re-written as:

RH(wH )�RH(~I
H

h wh) = �IHh r(2.8)

the right hand sides of equations (2.4) and (2.8) represent similar approximations of the restricted non-

linear residual, in view of equation (2.6) and the fact that these restricted residuals in the FAS scheme are

always evaluated at the most recently available �ne grid updates. Therefore, by equating the left hand sides

of equations (2.4) and (2.8), the equivalence between the linear multigrid scheme and the non-linear FAS

scheme is seen to be given by:
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RH(wH )�RH(~I
H

h wh) �
@RH

@wH

�wH(2.9)

which means that the FAS multigrid scheme corresponds to an approximation to a linear multigrid scheme,

where the coarse grid Jacobians are approximated by �nite di�erencing the operator. Therefore, in the limit

of asymptotic convergence, i.e. when �wH << 1, the two methods should yield similar convergence rates.

Note that the above discussion involves no speci�cation of the coarse grid operator and Jacobian con-

struction. Therefore, a fair comparison of linear versus non-linear multigrid methods should utilize a similar

construction for both of these quantities in the respective algorithms.

3. Multigrid Algorithms. The two multigrid variants implemented in this work are based on the ag-

glomeration multigrid strategy. Agglomeration multigrid was originally developed for �nite-volume schemes

[7, 22, 30], and is based on agglomerating or fusing together neighboring �ne grid control-volumes to form

larger coarse grid control volumes as depicted in Figure 3.1. This approach has since been generalized for

arbitrary discretizations following algebraic multigrid principles [9]. In fact, agglomeration multigrid can

be viewed as a simpli�cation and extension of algebraic multigrid to non-linear systems of equations. The

control-volume agglomeration algorithm can be recast as a graph algorithm, similar to algebraic multigrid

methods, where the \seed" vertex initiating an agglomerated cell corresponds to a coarse grid point, and

the neighboring agglomerated points correspond to �ne grid points, in the algebraic multigrid terminology

[20]. While weighted graph algorithms can be employed for agglomeration, these weights cannot depend on

solution values, as in the algebraic multigrid case, but only on grid metrics. In this manner, the coarse grid

levels are static and need only be constructed at the beginning of the simulation.

Agglomerated

Seed Point

 Points

Fig. 3.1. Illustration of Agglomeration Multigrid

Coarse Level Construction

As in the algebraic multigrid case, agglomeration multigrid employs a Galerkin projection for the construction

of the coarse grid equations. Thus, the coarse grid operator is given by:

RH = IHh RhI
h

H(3.1)

where IH
h

is the restriction operator, and Ih
H
is the prolongation operator, and both operators are taken as

piecewise constants. This simple construction applies equally to linear and non-linear operators, and reduces

to forming the coarse grid equation at an agglomerated cell as the sum of the �ne grid equations at each �ne
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grid cell contained in the coarse grid cell. The non-linearities in the operator are evaluated using solution

variables on the coarse grid interpolated up from the �ne grid.

Given this multigrid infrastructure, two particular algorithms which di�er mainly in the manner in

which non-linearities are handled are developed for comparison. The �rst involves a standard non-linear

FAS multigrid algorithm, and the second involves a linear multigrid algorithm applied to the linearization

of the governing equations.

3.1. FAS Scheme. In the non-linear FAS multigrid algorithm, equation (2.1) is solved directly. The

coarse grid equations are formed by Galerkin projection (c.f. equation (3.1)) and the non-linearities in the

coarse grid operator are evaluated using coarse level solution variables interpolated up from the �ne grid

using the ~IH
h

restriction operator (as per equation (2.8)). On each grid level, the discrete equations are

solved using a Jacobi preconditioned multi-stage time-stepping scheme (for the Navier-Stokes equations)

[16, 27, 26, 10] or a non-linear block Jacobi iteration which can be written as:

wnew = wold + [D]�1R(wold)(3.2)

where [D] represents the block diagonal of the Jacobian matrix. This smoother constitutes a non-linear

solver, since the non-linear residual is updated at each stage, and incurs minimum memory overheads since

only the storage of the block matrix [D] representing the coupling between the solution variables at each grid

point is required. This scheme is equivalent to a single stage Jacobi preconditioned multi-stage time-stepping

scheme.

3.2. Linear Multigrid Scheme. The linear multigrid scheme solves equation (2.3) on the �ne grid,

and equation (2.4) on the coarse levels. On the �ne grid, the Jacobian @Rh

@wh

is formed by explicitly di�erenti-

ating (hand coding) the discrete operator Rh. On the coarse levels, for consistency with the FAS multigrid

algorithm, the Jacobian is taken as the explicit di�erentiation of the coarse non-linear operator obtained

by Galerkin approximation (c.f. equation (3.1)). Thus 
ow variables as well as residuals are restricted to

the coarser grids, but the non-linear residuals on these coarser levels are not evaluated, only the Jacobians

corresponding to the linearization of the non-linear coarse level residuals. These coarse level Jacobians are

evaluated at the beginning of the solution phase for the non-linear time-step problem, and are then held

�xed throughout the linear multigrid iterations. The multi-level linear system constructed in this manner

more closely approximates the equivalent FAS scheme, as opposed to the more traditional approach of ag-

glomerating the �ne grid Jacobian terms directly. Memory requirements for the linear multigrid scheme are

increased over those of the FAS scheme due to the required storage of the �ne and coarse level Jacobians.

An outer Newton iteration is employed to solve the complete non-linear problem R(w) = 0. Within each

Newton iteration, the linear system de�ned by equation (2.3) is solved by the linear multigrid algorithm.

This provides a �ne grid correction �w which is then used to update the non-linear residual. These non-

linear iterations converge quadratically provided the linear system is solved to su�cient tolerance and a

consistent linearization is employed. When approximate Jacobian representations are employed, such as in

the Navier-Stokes equations, slower convergence of this outer iterative procedure is obtained.

On each grid level, the linear multigrid scheme solves the linear system using a block-Jacobi smoother.

If the Jacobian is divided up into diagonal and o�-diagonal block components, labeled as [D] and [O],

respectively, the Jacobi iteration can be written as:

[D]�wh
n+1 = �r� [O]�wh

n(3.3)
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where �wh
n represents corrections from the previous linear iteration, and �wh

n+1 represents the new

linear corrections produced by the current linear iteration. At each linear iteration, the solution of equation

(3.3) requires the inversion of the block matrix [D] at each grid point. The linear corrections �wh are

initialized to zero at the �rst iteration on each grid level. Therefore, this linear iteration strategy reduces to

the non-linear Jacobi scheme described above in the event only a single linear iteration is employed.

In contrast to the non-linear FAS multigrid algorithm, the residuals, jacobians (i.e. [D] and [O] terms),

and the variables interpolated up to the coarse grids are only evaluated at the start of the non-linear iteration,

and are held �xed during all inner linear multigrid cycles within a non-linear iteration.

4. Radiation Di�usion Problem. The non-equilibrium radiation di�usion equations can be written

as

@E

@t
�r:(DrrE) = �a(T

4 �E)

(4.1)

@T

@t
�r:(DtrT ) = ��a(T

4 �E)

with

�a =
z3

T 3
; Dr(T;E) =

1

3�a +
1

E

�
�@E
@n

�
�
; Dt(T ) = �T

5

2

Here, E represents the photon energy, T is the material temperature, and � is the material conductivity.

In the non-equilibrium case, the non-linear source terms on the right-hand-side are non-zero and govern

the transfer of energy between the radiation �eld and material temperature. Additional non-linearities are

generated by the particular form of the di�usion coe�cients, which are functions of the E and T variables.

In particular, the energy di�usion coe�cient, Dr(T;E) contains the term j@E
@n
j which refers to the gradient of

E in the direction normal to the cell interface (in the direction of the 
ux). This limiter term is an arti�cial

means of ensuring physically meaningful energy propagation speeds (i.e. no larger than the speed of light)

[2, 6, 14]. The atomic number z is a material coe�cient, and while it may be highly variable, it is only a

function of position (i.e. z = f(x,y) in two dimensions).

Equations (4.1) represent a system of coupled non-linear partial-di�erential equations which must be

discretized in space and time. Spatial discretization on two-dimensional triangular meshes is achieved by

a Galerkin �nite-element procedure, assuming linear variations of E and T over a triangular element. The

non-linear di�usion coe�cients are evaluated by �rst computing an average T and E value along a triangle

edge, and then computing the non-linear di�usion coe�cient at the edge midpoint using these averaged

values. The gradient of E in the Dr di�usion coe�cient is also taken as a one dimensional gradient along

the direction of the stencil edge. The source terms are evaluated using the local vertex values of E and T

exclusively, rather than considering linear variations of these variables.

The time derivatives are discretized as �rst-order backwards di�erences, with lumping of the mass matrix,

leading to an implicit scheme which requires the solution of a non-linear problem at each time step. This

approach is �rst-order accurate in time, and is chosen merely for convenience, since the principal objective

is the study of the solution of the non-linear system.
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The Jacobian of the required linearizations is obtained by di�erentiation (hand coding) of the discrete

non-linear residual. Because the spatial discretization involves a nearest neighbor stencil, the Jacobian can be

expressed on the same graph as the residual discretization, which corresponds to the edges of the triangular

grid. The initial guess for the solution of the non-linear problem at each time-step is taken as the solution

obtained at the previous time-step.

The test case chosen for this work is taken from [14] and depicted in Figure 4.1. We consider a unit square

domain of two dissimilar materials, where the outer region contains an atomic number of z = 1 and the inner

regions (1=3 < x < 2=3); (1=3 < y < 2=3) contains an atomic number of z = 10. The top and bottom walls

are insulated, and the inlet and outlet boundaries are speci�ed using mixed (Robin) boundary conditions,

as shown in the �gure. This domain is discretized using a triangular grid containing 7,502 vertices, shown

in Figure 4.2. This grid conforms to the material interface boundaries in such a way that no triangle edges

cross this boundary.

Figure 4.3 illustrates a typical simulation for this case. Incoming radiation sets up a traveling thermal

front in the material, the progress of which is impeded by the region of higher atomic number z. At critical

times in the simulation, the di�usion coe�cients can vary by up to six orders of magnitude near the material

interfaces, thus providing a challenging non-linear behavior for the multigrid algorithms. At each physical

time step, a non-linear problem must be solved. It is the solution of this transient non-linear problem at

a given time step which forms the test problem for the two agglomeration multigrid algorithms. Clearly,

the size of the physical time step a�ects the sti�ness of the non-linear problem to be solved, with smaller

physical time-steps leading to more rapidly converging systems. The non-dimensional time-step chosen in

this simulation was taken as 0.01. This constitutes a rather large value compared to those employed in

reference [14] (usually of the order of 10�3) and may have an adverse e�ect on overall temporal accuracy,

but provides a more stringent test case for the multigrid solvers. Of the order of 1000 time steps are required

to propagate the thermal front from the inlet to outlet boundary in the current simulation.

E  = 0             T  = 0y

E  = 0             T  = 0y

1 E -  1 E  = 0_ x_
6c4

Z = 10

Z = 1

y

y

_
4
E  +  1 E = 1

6
_

c
x

Fig. 4.1. Sample test problem for non-linear

radiation-di�usion equations

Fig. 4.2. Illustration of unstructured grid for non-

linear radiation-di�usion problem: 7,502 vertices
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Fig. 4.3. Illustration of solution for non-linear

radiation-di�usion problem: Contours of T

Table 4.1 depicts the relative time required for a non-linear residual evaluation on the �ne grid, assembly

of the various Jacobian matrix entries on the �ne grid, and timings for various components of the linear and

non-linear multigrid algorithms. The residual and Jacobian terms are assembled within the same loop for

cache e�ciency reasons, and minimal incremental work is incurred for computing the additional o�-diagonal

Jacobian terms, required for the linear multigrid scheme. This is due to the fact that much of the block

diagonal (point) Jacobian terms consist of the sum of the corresponding o�-diagonal Jacobian terms, and

thus require the same computations. For both linear and non-linear schemes, the block diagonal Jacobians

must be inverted, as shown in equations (3.2) and (3.3). For multiple Jacobi sweeps, the LU decomposition

of these block matrices is formed on the �rst pass, and then frozen for subsequent passes. Thus the �rst

linear or non-linear Jacobi iteration incurs additional cost over subsequent passes, as depicted in the table.

The timings illustrate the lower cost of the linear iterations, which are up to �ve times faster than the

corresponding non-linear iterations. In the non-linear case, the initial iteration involves the computation

of a non-linear residual, the diagonal Jacobian terms, and the LU decomposition of these Jacobians, while

subsequent iterations only require the evaluation of the non-linear residuals. In the linear case, the �rst

iteration includes the LU decomposition of the point Jacobians, but does not include residual and Jacobian

construction timings, (which are relegated to the outer Newton iteration). From the table, the non-linear

FAS multigrid cycle is seen to require four times more cpu time than the equivalent linear multigrid cycle.

In this case, a 4-level W(3,0) saw-tooth cycle was used, with three (linear or non-linear) Jacobi iterations

performed on each level when going from �ne to coarse levels. These timings do not include the outer Newton

iteration in the linear case, which incurs a non-linear residual evaluation and Jacobian construction, noting

that this expense may be amortized over a variable number of linear multigrid cycles.
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Table 4.1

Relative CPU Time Required for Various Components

of Linear and Non-Linear Multigrid Methods for Radiation

Di�usion Problem

Component Normalized Timing

Non-Linear Residual 1.0

Residual + Point Jacobians 2.52

Residual + Entire Jacobian 2.82

1st Stage Non-Linear Sweep 2.82

Add. Stages Non-Lin. Sweeps 1.07

1st Linear Jacobi Sweep 0.364

Incr. Linear Jacobi Sweeps 0.173

FAS MG Cycle 13.04

Linear MG Cycle 3.31
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Fig. 4.4. Convergence Rate for Transient Radiation

Problem in terms of Multigrid Cycles (3 linear MG cycles

per Newton update)
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Fig. 4.5. Convergence Rate for Transient Radiation

Problem in terms of Multigrid Cycles (5 linear MG cycles

per Newton update)
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Fig. 4.6. Convergence Rate for Transient Radiation

Problem in terms of Normalized CPU Time

Figure 4.4 provides a comparison of the convergence rates of the linear and non-linear multigrid schemes

in terms of the number of multigrid cycles. The four-level W(3,0) saw-tooth cycle described above is employed

in both cases. For the linear scheme, three linear multigrid cycles are employed for each Newton update,

and the convergence history of the linear residual is plotted alongside that of the non-linear residual. As

expected, quadratic convergence of the non-linear residual is initially observed in the linear-multigrid-Newton

scheme. However, this quadratic behavior is lost after four Newton iterations, due to the inexact solution

of the linear problem (using three multigrid cycles). In this region, the convergence rate of the outer non-

linear Newton scheme becomes governed or limited by the convergence of the inner linear problem. In the

quadratic convergence region, each time the non-linear residual is updated, the linear residual increases

slightly, before resuming its downwards trend. In the asymptotic region, the linear and non-linear residuals

become approximately equal, as expected from equation (2.6). In this region, the convergence of the non-

linear FAS multigrid scheme and the linear multigrid scheme become equivalent, in terms of the number

of multigrid cycles, as expected from equation (2.9). The fact that the linear multigrid convergence plot

lies slightly to the right of the FAS convergence curve is due to the additional e�ort spent solving the

linear system in the initial phases of slow non-linear convergence. Figure 4.5 further illustrates this point,

by comparing the convergence history for the same approach using �ve linear multigrid cycles per Newton

iteration. In this case, the �nal asymptotic convergence rate is similar, but is reached at a later stage and

with additional numbers of multigrid sweeps due to increased oversolving of the linear system in the initial

stages of non-linear convergence. Adaptive convergence criteria for the linear system can clearly aid in

reducing oversolution of the linear system, although this has not been considered in this work.

Figure 4.6 compares the convergence e�ciencies of the non-linear FAS multigrid approach with the

linear multigrid approach using three multigrid cycles per Newton iteration, in terms of cpu time. The linear

multigrid method is over three times more e�cient, which can be entirely attributed to the lower cost per

multigrid cycle of the linear multigrid scheme.

5. Solution of Steady-State Navier-Stokes Equations. The Navier-Stokes equations are dis-

cretized on mixed triangular-quadrilateral meshes using a vertex-based approach where the 
ow variables are

stored at the grid vertices. Median-dual control volumes are constructed around each vertex, and 
uxes at

control volume interfaces are evaluated using a Roe approximate Rieman solver [19]. Second-order accuracy
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is obtained through a simpli�ed gradient reconstruction technique which results in a distance-two neighbor

stencil. Viscous terms are constructed as di�usion operators involving nearest neighbor stencils. For inviscid


ow simulations, the viscous 
uxes are neglected, while for viscous turbulent 
ows these terms are retained,

and the in
uence of turbulence is simulated using the Spalart-Allmaras one equation turbulence model [23].

The turbulence equation is discretized in the same manner as the 
ow equations, with the exception that

the convective terms are only �rst-order accurate. The turbulence equation is solved simultaneously but

uncoupled from the 
ow equations using the same multigrid algorithm.

The non-linear FAS multigrid solver employs a multi-stage time-stepping scheme as a smoother on all grid

levels, which requires the evaluation of the non-linear residual at each stage. While the �ne grid equations are

discretized to second-order accuracy, the coarse level equations are only discretized to �rst-order accuracy.

This simpli�es their implementation on the coarse level agglomerated graphs, and is consistent with practices

used on structured geometric multigrid solvers for similar problems [5, 9]. Local preconditioning is applied

to the multistage scheme by pre-multiplying the non-linear residual by the inverted block diagonal Jacobian

matrix at each stage [16, 27, 26, 10]. This is equivalent to a (scaled) non-linear Jacobi iteration at each stage.

For viscous 
ows, line preconditioning is employed, which involves inverting the block tridiagonal Jacobian

entries along lines constructed in boundary layer regions (c.f. Figure 5.5) [10, 12]. This corresponds to a non-

linear iterative line solution technique which can be described by equation (3.2) where [D] now represents the

line Jacobians, instead of the diagonal elements. In isotropic grid regions, the lines reduce to a single point

and the line preconditioning becomes equivalent to Jacobi preconditioning. In all cases, the local Jacobian

entries correspond to those derived from a �rst-order discretization. The LU decomposition of these local

Jacobians is performed on the �rst stage of the multi-stage scheme and then frozen for the subsequent stages

of the scheme, thus amortizing the LU decomposition cost over multiple stages.

The linear multigrid method operates on the discrete Jacobian of the �rst-order discretization of the

non-linear 
ow equations, although the �ne grid 
ow equations are discretized to second-order accuracy.

Non-linear residuals are only evaluated on the �ne grid at the beginning of each linear solution phase,

which may involve multiple linear multigrid sweeps. Coarse grid Jacobians are obtained by linearizing the

non-linear coarse grid agglomerated operator, in order to provide a more consistent comparison between

equivalent linear and non-linear methods. On each grid level, multiple passes of a linear Jacobi or Gauss-

Seidel smoother are employed for inviscid 
ows. For viscous 
ows, multiple passes of a linear line solver

are employed, following equation (3.3), where [D] corresponds to the block tridiagonal Jacobians taken

along the set of lines constructed in the grid, and [O] corresponds to the remaining Jacobian entries. The

Jacobi implementations of point and line algorithms correspond to the linear counterparts of the non-linear

smoothers used in the FAS multigrid algorithm. In the Gauss-Seidel implementation, lines and points are

pre-sorted in increasing x-direction, and sweeps using latest available updates are performed on the grid in

increasing and decreasing x direction at odd and even smoothing passes, respectively. When multiple linear

smoothing passes are employed, the LU decomposition of the local point or line Jacobians is performed on

the �rst pass and then frozen for subsequent passes.
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Table 5.1

Relative CPU Time Required for Various Components

of Linear and Non-Linear Multigrid Methods for Inviscid

Fluid Flow Problem

Component (Euler) Normalized Timing

Non-Linear Residual 1.0

Residual + Line Jacobians 1.62

Residual + Entire Jacobian 1.86

1st Stage Non-Linear Sweep 1.96

Add. Stages Non-Lin. Sweeps 1.26

1st Linear GS Sweep 0.43

Incr. Linear GS Sweeps 0.38

3-stage FAS MG Cycle 8.92

5-stage FAS MG Cycle 9.86

Linear MG Cycle (1 W cycle) 5.70

Linear MG Cycle (2 W cycles) 8.98

Table 5.2

Relative CPU Time Required for Various Components

of Linear and Non-Linear Multigrid Methods for Viscous

Fluid Flow Problem

Component (Navier-Stokes) Normalized Timing

Non-Linear Residual 1.17

Residual + Line Jacobians 2.13

Residual + Entire Jacobian 2.39

1st Stage Non-Linear Sweep 2.44

Add. Stages Non-Lin. Sweeps 1.44

1st Linear GS Sweep 0.43

Add. Linear GS Sweeps 0.38

3-stage FAS MG Cycle 10.4

5-stage FAS MG Cycle 11.3

Linear MG Cycle (1 W cycle) 6.3

Linear MG Cycle (2 W cycles) 9.6

For the inviscid case, an isotropic coarsening strategy which results in a coarsening ratio of 4:1 is

employed for generating coarse agglomerated levels, while a directional coarsening strategy which proceeds

in the direction of the implicit lines is employed in the viscous 
ow cases, also yielding a 4:1 reduction in

complexity between �ne and coarse levels [10, 12].
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Tables 5.1 and 5.2 depict the relative cpu times required for the various components of the linear and

non-linear algorithms on the grid of Figure 5.4, for both inviscid Euler computations and viscous Navier

Stokes computations. Both a three stage [10, 28] and a �ve stage [8] non-linear smoother are examined.

The time required for the 5-stage smoother increases only moderately over that required for the 3-stage

scheme, due to the fact that the local Jacobian LU decomposition is only performed once for each scheme,

and the dissipative terms are only evaluated three times for both schemes (at odd stages only for the 5-

stage scheme) [8]. Assembly of the complete Jacobian required for the linear scheme incurs relatively little

extra overhead over that required for assembling the point or line Jacobians, since many of the same terms

required for the point Jacobians can be used in these additional o�-diagonal Jacobian elements. Both linear

and non-linear smoothers involve additional startup cost on the �rst smoothing pass, due to the need to

perform the LU decomposition of the local Jacobians, which are frozen on subsequent passes. The Jacobi

(not shown) and Gauss-Seidel variants of each linear solver are approximately equivalent in overall cost, and

can be seen to be approximately four times less costly than the equivalent non-linear solver, mainly due

to the fact that these smoothers avoid evaluation of the non-linear residual. Overall, a non-linear update

using a single linear multigrid W-saw-tooth-cycle, with 4 Gauss-Seidel smoothing sweeps on each grid level,

requires approximately 60% of the e�ort of a three-stage FAS scheme. Using two linear multigrid cycles

per non-linear update results in a non-linear update cost approximately equal to that observed with the

3-stage FAS scheme for the inviscid 
ow case. The linear method e�ciency advantage is slightly higher in

the viscous 
ow case, since the non-linear residual is now augmented by the additional viscous terms which

must be computed, while the linear smoother remains identical in cost since the stencil is unchanged from

the inviscid case.

The inviscid test case consists of 
ow over a NACA 0012 airfoil at a Mach number of 0.8 and an incidence

of 1.25 degrees. This well known test case produces a strong upper surface shock and a weaker lower surface

shock. The unstructured triangular mesh for this case contains a total of 7,884 vertices. Figure 5.1 depicts

the observed convergence rates for this case with the various schemes discussed above, compared in terms

of cpu time required for a given level of reduction in the rms average of density residuals. A four level

W-cycle was used for both multigrid schemes. The �gure shows the linear multigrid approach, using a single

W-cycle with four Gauss-Seidel smoothing passes, is approximately twice as e�cient as the three-stage FAS

scheme. The increase in e�ciency between the Gauss-Seidel and Jacobi linear multigrid algorithms is due

to the superior convergence properties of Gauss-Seidel over Jacobi, since both sweeps require approximately

the same amount of cpu time. The 5-stage FAS scheme is slightly more e�cient than the 3 stage scheme, as

much of the local Jacobian LU decomposition and multigrid overhead is amortized over more grid sweeps.

Figure 5.2 illustrates the non-linear convergence rates achieved for the linear multigrid scheme per non-

linear update, as a function of the number of linear multigrid cycles. The non-linear convergence rate has

a lower bound which is approached as the number of linear multigrid cycles is increased and the linear

system is solved more exactly. This asymptotic rate, which is in the neighborhood of 0.78, can be viewed

as a measure to which the �rst-order Jacobian approximates the second-order discretization. (Quadratic

convergence would be observed for an exact match). Note that only two linear W-cycles are e�ective at

achieving most of this non-linear convergence, although the scheme using a single linear multigrid cycle is

the most e�cient overall, as shown in Figure 5.1. Improving the convergence past this threshold cannot be

achieved with better linear solvers, but only through a more accurate Jacobian representation.

One way to achieve this is to use a matrix-free Newton-Krylov method [21, 15, 29] to approximate the

exact Jacobian of the full second-order accurate residual. The linear multigrid solver provides a natural
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candidate for a preconditioner of the Newton-Krylov method. The non-linear GMRES routine developed by

Wigton and Yu [31] is employed for this purpose. This approach, which corresponds to a left-preconditioning

strategy [21], also allows the use of a non-linear solver as a preconditioner, and hence the FAS multigrid

solver is also implemented as a preconditioner for GMRES. Very rapid convergence in terms of non-linear

updates is observed in Figure 5.2 when the Newton-Krylov method (using ten search directions) is applied

with the linear multigrid method as a preconditioner. Figure 5.3 illustrates the convergence obtained with

both multigrid schemes employed as solvers and as preconditioners for GMRES, using ten search directions,

in terms of cpu time. The improvement is less dramatic when measured in this manner, since each non-linear

update involves ten multigrid cycles. However, the Newton-Krylov method provides similar overall gains in

e�ciency for both the linear and non-linear schemes, particularly in the asymptotic convergence region.
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The next test case involves the computation of viscous turbulent transonic 
ow over an RAE 2822 airfoil

at a Mach number of 0.73, and incidence of 2.31 degrees, and a Reynolds number of 6.5 million on the grid

depicted in Figure 5.4. This grid contains a total of 16,167 vertices, and makes use of quadrilaterals in the

highly stretched boundary layer and wake regions, and triangles in isotropic regions. The linear and non-
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linear line algorithms are used in this case on the set of lines depicted in Figure 5.5, which were constructed

using a previously developed graph algorithm [10]. The 
ow�eld was initialized with freestream conditions

and the turbulence model is converged simultaneously with the 
ow equations. Figure 5.6 illustrates the

overall convergence of the various algorithms versus the number of non-linear iterations. In this case, a

single linear W-cycle using four Jacobi smoothing passes on each level provides an asymptotically faster

convergence rate per cycle than either FAS scheme, while the Gauss-Seidel version of this scheme is even

faster. When these schemes are compared in terms of cpu time in Figure 5.7, the linear Gauss-Seidel scheme

is three times more e�cient than either non-linear FAS scheme, due to the superior convergence rate, as well

as the lower cost per cycle of the linear multigrid scheme.

Fig. 5.4. Illustration of Unstructured Grid for Vis-

cous Flow over Airfoil (16,167 points)

Fig. 5.5. Illustration of Line Structure for Line Solver

for Viscous Flow over Airfoil
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Figure 5.8 illustrates the increased convergence e�ciency when using the linear or non-linear multigrid

scheme as a preconditioner for GMRES, employing ten search directions. Similar increases in convergence

e�ciency are obtained in both cases, with the non-linear scheme bene�ting slightly more than the linear

scheme. However, the linear multigrid preconditioned GMRES approach remains the overall most e�cient

solution technique.

The �nal test case involves subsonic viscous 
ow over a multi-element airfoil. The grid and associated line

system are depicted in Figures 5.9 and 5.10. This mesh contains a total of 61,104 vertices, with quadrilateral

elements in the boundary layer and wake regions, and triangular elements elsewhere. The Mach number

for this case is 0.2, the incidence is 16 degrees, and the Reynolds number is 9 million. For this case,

the Rieman solver is modi�ed according to the low-Mach number preconditioning techniques developed

previously [10, 26, 17]. The �nal computed solution in terms of Mach number contours is depicted in Figure

5.11. Complex cases of this nature have proved to be the most di�cult to converge e�ciently in past

studies [10]. A 5 level W-cycle is used in all cases for the multigrid algorithms. The 
ow�eld is initialized

with a pre-converged solution obtained after 150 cycles of the FAS multigrid scheme (itself initialized from

freestream conditions), and the turbulence model is frozen at its �nal converged values throughout these

computations. This is done in order to focus on the asymptotic convergence behavior of the linear versus

non-linear methods, and to avoid the complications of non-linear continuation which are required in this case

for the linear solver operating on a freestream initialization.

In Figure 5.12 the relative convergence e�ciencies of the linear and non-linear methods are displayed,

as a function of the number of non-linear iterations. Although the linear multigrid scheme using a single

W-cycle (with 4 Gauss-Seidel smoothing passes) initially converges faster than the 3-stage FAS scheme, the

latter achieves a slightly faster asymptotic rate of convergence. However, both methods are almost equivalent

asymptotically in terms of cpu time, since the linear multigrid method provides lower cost multigrid sweeps,

as shown in Figure 5.13. In both cases, the overall convergence rate is over six times slower than that

observed in the previous two cases. Solving the linear system to completion at each non-linear update (using

20 linear W-cycles) produces no observable bene�t in non-linear convergence rate, as depicted in Figure 5.12.

This indicates that the slower convergence in this case is attributable to a poor approximation of the full

Jacobian by the reduced �rst-order Jacobian used in the linear multigrid scheme. Using either the non-linear
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or the linear multigrid solver as a preconditioner for GMRES, with 20 search directions, produces a sizable

increase in speed of convergence, as shown in Figure 5.13. However, the speedup is more pronounced in

the case of the linear multigrid solver, where the Krylov method produces a factor of 2.5 increase in overall

convergence per cpu time.

Fig. 5.9. Illustration of Unstructured Grid for Vis-

cous Flow over Three-Element Airfoil (61,104 points)

Fig. 5.10. Illustration of Implicit Lines for Viscous

Flow over Three-Element Airfoil

Fig. 5.11. Computed Mach Contours for Viscous

Flow over Three-Element Airfoil
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Fig. 5.14. Convergence E�ciency for Various Algo-

rithms for 3-Element Airfoil Flow Problem as Measured by

Preconditioned Residual History

Upon initiating the Krylov method, a large jump in the residuals is observed, which is attributed to the

fact that the current Newton-Krylov method operates on the preconditioned residual (i.e. left precondition-

ing). When the convergence history is plotted in terms of the preconditioned residual, which corresponds to

the non-linear corrections produced by the multigrid scheme, a monotone behavior is observed. However,

as can be seen from these two plots, conclusions concerning the relative solution e�ciency of the various

schemes may be a function of the particular measure of convergence.

Table 5.3 illustrates the asymptotic convergence rates achieved by the linear multigrid scheme for all

three cases when the linear system is solved to completion at each non-linear update. This represents a lower

limit achievable with the multigrid schemes as solvers, and is due to the di�erence between the true Jacobian

of the second order discretization, and the approximate �rst-order Jacobian employed in the linearization for

the linear multigrid scheme, which is also used in the local Jacobians and coarse levels for the FAS multigrid

scheme.

This rate is seen to be substantially slower for the last case, indicating that convergence di�culties in

this case cannot be addressed through improved linear multigrid methods or, for that matter, any linear
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solver based on the �rst-order Jacobian. Hence, improved restriction, prolongation, coarse grid operators,

or agglomeration techniques will have little e�ect in this case, and future research should concentrate either

on better full Jacobian approximations, or improved Krylov methods.

Table 5.3

Asymptotic Convergence Rates Observed for Various

Cases when Linear System Solved to Completion at Each

Non-Linear Iteration

Case Asymptotic Rate

NACA 0012 Euler Transonic 0.78

RAE 2822 NS Transonic 0.76

Multi-Element NS Subsonic 0.965

6. Conclusions. The preceding examples demonstrate how linear multigrid methods can deliver supe-

rior asymptotic convergence e�ciency over non-linear multigrid methods for 
uid 
ow or radiation di�usion

problems. When exact Jacobians are available, similar asymptotic convergence rates per multigrid cycle are

observed for equivalent linear and non-linear multigrid methods. The e�ciency gains of the linear methods

are largely attributed to the reduced number of costly non-linear residual evaluations required, and the abil-

ity to employ a linear Gauss-Seidel smoother in the place of a Jacobi smoother. Therefore, in cases where

costly or complicated non-linear discretizations are employed, the use of linear methods can be advantageous.

Additional convergence acceleration can be achieved by using both linear and non-linear methods as

preconditioners to a Newton-Krylov method. This approach is particularly bene�cial in cases where an

inaccurate linearization is employed by the multigrid solvers.

These conclusions only apply to the solution e�ciency in regions of monotonic asymptotic non-linear

convergence and when globalization methods are not required. While many practical cases exist (particularly

for time-dependent problems) where this behavior is observed, the issues of non-linear convergence and

robustness have not been addressed herein, and may a�ect the performance of a non-linear method over

a linear method. Furthermore, the required Jacobian storage for the linear multigrid approach can be

prohibitive for many applications, particularly in three dimensions.

This study is to be extended into three dimensions in the near future, and to parallel computer envi-

ronments. While the overall comparisons can be expected to be similar in three dimensions, evidence shows

that linear methods may su�er more e�ciency degradation on parallel machines due to the larger number of

cheaper grid sweeps employed, which has the e�ect of raising the computation to communication ratio [24].
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